orthogonal table - definizione. Che cos'è orthogonal table
DICLIB.COM
Strumenti linguistici IA
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole da parte dell'intelligenza artificiale

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è orthogonal table - definizione

Orthogonal coordinate system; Orthogonal coordinate

Orthogonal polynomials         
SET OF POLYNOMIALS WHERE ANY TWO ARE ORTHOGONAL TO EACH OTHER
Orthogonal polynomial; Orthogonal polynomials/Proofs; Orthogonal polynomials/proofs; Orthonormal polynomial
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
Orthogonal coordinates         
In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents).
Projective orthogonal group         
  • right
  • right
TWOFOLD QUOTIENT OF THE ORTHOGONAL GROUP: PO(N) = O(N)/{±1}
Projective special orthogonal group; Projective general orthogonal group
In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q)A quadratic space is a vector space V together with a quadratic form Q; the Q is dropped from notation when it is clear. on the associated projective space P(V).

Wikipedia

Orthogonal coordinates

In mathematics, orthogonal coordinates are defined as a set of d coordinates q = ( q 1 , q 2 , , q d ) {\displaystyle \mathbf {q} =(q^{1},q^{2},\dots ,q^{d})} in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.